Abstract
Let Ω and Ω′ be two locally compact, connected Hausdorff spaces having countable bases. On each of the spaces is defined a system of harmonic functions satisfying the axioms of M. Brelot [2]. The following is the description of such a system. To each open set of Ω is assigned a vector space of finite continuous functions, called the harmonic functions, on this set.
Publisher
Cambridge University Press (CUP)
Reference6 articles.
1. Intégration Ch. 5, Intégration des mesures;Bourbaki
2. Extreme harmonic functions and boundary value problems
3. Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel
4. Séminaire de Théorie du potentiel II;Brelot,1958
5. Séminaire Bourbaki 130;Choquet,1956
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献