Theta-functions and Hilbert modular forms

Author:

Kudla Stephen S.

Abstract

The purpose of this note is to show how the theta-functions attached to certain indefinite quadratic forms of signature (2, 2) can be used to produce a map from certain spaces of cusp forms of Nebentype to Hilbert modular forms. The possibility of making such a construction was suggested by Niwa [4], and the techniques are the same as his and Shintani’s [6]. The construction of Hilbert modular forms from cusp forms of one variable has been discussed by many people, and I will not attempt to give a history of the subject here. However, the map produced by the theta-function is essentially the same as that of Doi and Naganuma [2], and Zagier [7]. In particular, the integral kernel Ω(τ, z1, z2) of Zagier is essentially the ‘holomorphic part’ of the theta-function.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference12 articles.

1. Weil representation I. Intertwining distributions and discrete spectrum;Rallisg,1975

2. Indefinite quadratische formen und funktionentheorie I

3. On Modular Forms of Half Integral Weight

4. On construction of holomorphic cusp forms of half integral weight

5. Automorphic forms constructed from the Weil representation: holomorphic case;Rallisg,1976

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A quaternionic Saito–Kurokawa lift and cusp forms on G2;Algebra & Number Theory;2021-06-30

2. Twisted component sums of vector-valued modular forms;Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg;2019-10

3. On Doi–Naganuma and Shimura liftings;The Ramanujan Journal;2017-11-15

4. The General Noncompact Symmetric Space;Harmonic Analysis on Symmetric Spaces—Higher Rank Spaces, Positive Definite Matrix Space and Generalizations;2016

5. The Poincaré Upper Half-Plane;Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3