Author:
Chang Der-Chen,Stević Stevo
Abstract
AbstractLet H(Dn) be the space of holomorphic functions on the unit polydisk Dn, and let , where p, q> 0, α = (α1,…,αn) with αj > -1, j =1,..., n, be the class of all measurable functions f defined on Dn such thatwhere Mp(f,r) denote the p-integral means of the function f. Denote the weighted Bergman space on . We provide a characterization for a function f being in . Using the characterization we prove the following result: Let p> 1, then the Cesàro operator is bounded on the space .
Publisher
Cambridge University Press (CUP)
Reference8 articles.
1. Weighted integrals of holomorphic functions in Cn;Stević;Complex Variables,2002
2. Weighted integrals and conjugate functions in the unit disk;Stević;Acta Sci. Math.,2003
3. Weighted integrals of analytic functions;Siskakis;Acta Sci. Math.,2000
4. A note on weighted Bergman spaces and the Cesaro Operator
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献