Martin boundaries of cartesian products of markov chains

Author:

Picardello Massimo A.,Woess Wolfgang

Abstract

Let P and Q be the stochastic transition operators of two time-homogeneous, irreducible Markov chains with countable, discrete state spaces X and Y, respectively. On the Cartesian product Z = X x Y, define a transition operator of the form Ra = a·P + (1 — a) · Q, 0 < a < 1, where P is considered to act on the first variable and Q on the second. The principal purpose of this paper is to describe the minimal Martin boundary of Ra (consisting of the minimal positive eigenfunctions of Ra with respect to some eigenvalue t, also called t-harmonic functions) in terms of the minimal Martin boundaries of P and Q.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference14 articles.

1. The differential entropy of the boundary of a random walk on a group

2. Boundary behaviour of eigenfunctions of the Laplacian in a bi-tree;Picardello;J. Reine Angew. Math.,1992

3. On the Martin boundary of Riemannian products

4. Discrete potential theory and boundaries;Doob;J. Math. Meth.,1959

5. Markoff chains and Martin boundaries;Hunt;Illinois J. Math.,1960

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Liouville Property and Poisson Boundary of Random Walks with Infinite Entropy: What’s Amiss?;Functional Analysis and Its Applications;2024-06

2. Reflected random walks and unstable Martin boundary;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2024-02-01

3. Лиувиллевость и граница Пуассона блужданий с бесконечной энтропией: что не так?;Функциональный анализ и его приложения;2024

4. Martin boundary of random walks in convex cones;Annales Henri Lebesgue;2022-05-04

5. Constructing discrete harmonic functions in wedges;T AM MATH SOC;2021-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3