Abstract
In our earlier paper [4] we developed the basic sheaftheoretic and cohomological properties of ample vector bundles. These generalize the corresponding well-known results for ample line bundles. The numerical properties of ample vector bundles are still poorly understood. For line bundles, Nakai’s criterion characterizes ampleness by the positivity of certain intersection numbers of the associated divisor with subvarieties of the ambient variety. For vector bundles, one would like to characterize ampleness by the numerical positivity of the Chern classes of the bundle (and perhaps of its restrictions to subvarieties and their quotients). Such a result, like the Riemann-Roch theorem, giving an equivalence between cohomological and numerical properties of a vector bundle, may be quite subtle. Some progress has been made by Gieseker [2], by Kleiman [8], and in the analytic case, by Griffiths [3].
Publisher
Cambridge University Press (CUP)
Cited by
94 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献