Abstract
We prove global well-posedness of the time-dependent degenerate thermistor problem by establishing a uniform-in-time bounded mean ocsillation (BMO) estimate of inhomogeneous parabolic equations. Applying this estimate to the temperature equation, we derive a BMO bound of the temperature uniform with respect to time, which implies that the electric conductivity is an $A_{2}$ weight. The Hölder continuity of the electric potential is then proved by applying the De Giorgi–Nash–Moser estimate for degenerate elliptic equations with an $A_{2}$ coefficient. The uniqueness of the solution is proved based on the established regularity of the weak solution. Our results also imply the existence of a global classical solution when the initial and boundary data are smooth.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献