THE MULTI-MARGINAL OPTIMAL PARTIAL TRANSPORT PROBLEM

Author:

KITAGAWA JUN,PASS BRENDAN

Abstract

We introduce and study a multi-marginal optimal partial transport problem. Under a natural and sharp condition on the dominating marginals, we establish uniqueness of the optimal plan. Our strategy of proof establishes and exploits a connection with another novel problem, which we call the Monge–Kantorovich partial barycenter problem (with quadratic cost). This latter problem has a natural interpretation as a variant of the factories-and-mines description of optimal transport. We then turn our attention to various analytic properties of these two problems. Of particular interest, we show that monotonicity of the active marginals with respect to the amount $m$ of mass to be transported can fail, a surprising difference from the two-marginal case.

Publisher

Cambridge University Press (CUP)

Subject

Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis

Reference21 articles.

1. [11] W. Gangbo , ‘Habilitation thesis’, Universite de Metz, available at http://people.math.gatech.edu/ gangbo/publications/habilitation.pdf, 1995.

2. Barycenters in the Wasserstein Space

3. Optimal maps for the multidimensional Monge-Kantorovich problem

4. Décomposition polaire et réarrangement monotone des champs de vecteurs;Brenier;C. R. Acad. Sci. Paris Sér. I,1987

5. Free boundaries in optimal transport and Monge-Ampère obstacle problems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Risk Management via Multi-marginal Optimal Transport;Journal of Optimization Theory and Applications;2024-05-09

2. C2,α$C^{2,\alpha }$ regularity of free boundaries in optimal transportation;Communications on Pure and Applied Mathematics;2023-09-07

3. Kantorovich–Rubinstein Distance and Barycenter for Finitely Supported Measures: Foundations and Algorithms;Applied Mathematics & Optimization;2022-11-07

4. Unbalanced optimal total variation transport problems and generalized Wasserstein barycenters;Proceedings of the Royal Society of Edinburgh: Section A Mathematics;2021-06-04

5. Multi-species Optimal Transportation;Journal of Optimization Theory and Applications;2019-09-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3