Dynamics of the interaction of a pair of thin evaporating droplets on compliant substrates

Author:

Malachtari A.,Karapetsas G.ORCID

Abstract

The dynamics of the interaction of a system of two thin volatile liquid droplets resting on a soft viscoelastic solid substrate are investigated theoretically. The developed model fully considers the effect of evaporative cooling and the generated Marangoni stresses due to the induced thermal gradients, while also accounting for the effect of the gas phase composition and the diffusion of vapour in the atmosphere of the droplets. Using the framework of lubrication theory, we derive evolution equations for both the droplet profile and the displacement of the elastic solid, which are solved in combination with Laplace's equation for the vapour concentration in the gas phase. A disjoining-pressure/precursor-film approach is used to describe contact-line motion. The evolution equations are solved numerically, using the finite-element method, and we present a thorough parametric analysis to investigate the physical properties and mechanisms that affect the dynamics of droplet interactions. The results show that the droplets interact through both the soft substrate and the gas phase. In the absence of thermocapillary phenomena, the combined effect of non-uniform evaporation due to the increased vapour concentration between the two droplets and elastocapillary phenomena determines whether the drop–drop interaction is attractive or repulsive. The Marangoni stresses suppress droplet attraction at the early stages of the drying process and lead to longer droplet lifetimes. For substrates with intermediate stiffness, the emergence of spontaneous symmetry breaking at late stages of evaporation is found. The rich dynamics of this complex system is explored by constructing a detailed map of the dynamic regimes.

Funder

Hellenic Foundation for Research and Innovation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3