Biorthogonal decomposition of the disturbance flow field generated by particle impingement on a hypersonic boundary layer

Author:

A. Al Hasnine S.M.ORCID,Russo V.,Tumin A.,Brehm C.ORCID

Abstract

The disturbance flow field in a hypersonic boundary layer excited by particle impingement was investigated with a focus on the first stage of the laminar-to-turbulent transition process, namely the receptivity process. A previously validated direct numerical simulation approach adopting disturbance flow tracking is used to simulate the particle-induced transition process. Particle impingement generates a highly complex disturbance flow field that can be characterised by a wide range of frequencies and wavenumbers. After providing some insight about the spectral characteristics of the disturbance flow field in the frequency and wavenumber domains, biorthogonal decomposition is employed to reveal the composition of the disturbance flow field consisting of different continuous and discrete eigenmodes that are triggered through particle impingement. The disturbance flow characteristics for different frequency and wavenumber pairs are discussed where large contributions in the disturbance flow spectrum are observed in the vicinity of the impingement location. A significant amount of the disturbance energy is diverted into the free stream leading to large coefficients of projection for the slow and fast acoustic branches while contributions to the entropy and vorticity branches are negligible. In addition to the continuous acoustic spectra, the first-, second- and other higher-order Mack modes are activated and provide large contributions to the disturbance flow field inside the boundary layer. Finally, it is demonstrated that the disturbance flow field in the vicinity of the impingement location can be reconstructed with a maximum relative error of $2.3\,\%$ by employing a theoretical biorthogonal eigenfunction system expansion and by considering contributions from fast and slow acoustic waves and at most four discrete modes only.

Funder

Office of Naval Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference54 articles.

1. Hasnine, S.M.A.A. , Russo, V. , Tumin, A. & Brehm, C. 2021 Three-dimensional spatio-temporal disturbance flow field analysis of particulate-induced high-speed boundary-layer transition. In AIAA Scitech 2021 Forum, p. 1657. AIAA.

2. Investigation of Atmospheric Turbulence and Shock Interaction for a Hypersonic Sphere-Cone

3. A comparison of higher-order finite-difference shock capturing schemes

4. An efficient linear wavepacket tracking method for hypersonic boundary-layer stability prediction

5. Three-dimensional spatial normal modes in compressible boundary layers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3