The magnetised plasma Richtmyer–Meshkov instability: elastic collisions in an ion–electron multifluid plasma

Author:

Tapinou Kyriakos ChristosORCID,Wheatley Vincent,Bond DarylORCID

Abstract

The influence of an applied magnetic field on the collisional plasma Richtmyer–Meshkov instability (RMI) is investigated through numerical simulation. The instability is studied within the five-moment multifluid plasma model without any simplifying assumptions such as infinite speed of light, negligible electron inertia or quasineutrality. The plasma is composed of ion and electron fluids, and elastic collisions are modelled with the Braginskii transport coefficients. A collisional regime is investigated and the magnetic field is applied in the direction of shock propagation, which is perpendicular to the density interface. The primary instability is influenced by several terms affecting the evolution of circulation, the most significant of which are the baroclinic, magnetic field torque and intraspecies collisional terms. The applied magnetic field results in a reduction of interface perturbation growth, agreeing qualitatively with previous numerical simulations for the case of an ideal multifluid plasma RMI. The only major difference in the present case's instability mitigation by applied magnetic field, relative to the ideal case with applied magnetic field, is that the elastic collisions replace and obstruct the secondary vorticity suppression mechanism through collisional dissipation of vorticity. Additionally the collisions, influenced by the combination of self-generated and the applied magnetic field, introduce anisotropy to the problem. The primary suppression mechanism for the RMI is unchanged relative to the ideal case, i.e. the magnetic field torque resisting baroclinic deposition of vorticity in the ion fluid.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3