Abstract
We revisit the classical problem of calculating the pancake-like shape of a sessile drop at large Bond numbers. Starting from a formulation where drop volume and contact angle are prescribed, we develop an asymptotic scheme which systematically produces approximations to the two key pancake parameters, height and radius. The scheme is based on asymptotic matching of a ‘flat region’ where capillarity is negligible and an ‘edge region’ near the contact line. Major simplifications follow from the distinction between algebraically and exponentially small terms, together with the use of two exact integral relations. The first represents a force balance in the vertical direction. The second, which can be interpreted as a radial force balance on the drop edge (up to exponentially small terms), generalises an approximate force balance used in classical treatments. The resulting approximations for the geometric pancake parameters, which go beyond known leading-order results, are compared with numerical calculations tailored to the pancake limit. These, in turn, are facilitated by an asymptotic approximation for the exponentially small apex curvature, which we obtain using a Wentzel–Kramers–Brillouin method. We also consider the comparable two-dimensional problem, where similar integral balances explicitly determine the pancake parameters in closed form up to an exponentially small error.
Funder
Leverhulme Trust
Israel Science Foundation
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献