From sheared annular centrifugal Rayleigh–Bénard convection to radially heated Taylor–Couette flow: exploring the impact of buoyancy and shear on heat transfer and flow structure

Author:

Zhong JunORCID,Wang DongpuORCID,Sun ChaoORCID

Abstract

We investigate the coupling effect of buoyancy and shear based on an annular centrifugal Rayleigh–Bénard convection (ACRBC) system in which two cylinders rotate with an angular velocity difference. Direct numerical simulations are performed in a Rayleigh number range $10^6\leq Ra\leq 10^8$ , at fixed Prandtl number $Pr=4.3$ , inverse Rossby number $Ro^{-1}=20$ , and radius ratio $\eta =0.5$ . The shear, represented by the non-dimensional rotational speed difference $\varOmega$ , varies from $0$ to $10$ , corresponding to an ACRBC without shear and a radially heated Taylor–Couette flow with only the inner cylinder rotating, respectively. A stable regime is found in the middle part of the interval for $\varOmega$ , and divides the whole parameter space into three regimes: buoyancy-dominated, stable and shear-dominated. Clear boundaries between the regimes are given by linear stability analysis, meaning the marginal state of the flow. In the buoyancy-dominated regime, the flow is a quasi-two-dimensional flow on the $r\varphi$ plane; as shear increases, both the growth rate of instability and the heat transfer are depressed. In the shear-dominated regime, the flow is mainly on the $rz$ plane. The shear is so strong that the temperature acts as a passive scalar, and the heat transfer is greatly enhanced. The study shows that shear can stabilize buoyancy-driven convection, makes a detailed analysis of the flow characteristics in different regimes, and reveals the complex coupling mechanism of shear and buoyancy, which may have implications for fundamental studies and industrial designs.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3