Abstract
Green hydrogen is expected to have a key role in the transition towards a carbon-neutral society, particularly in the transportation sector. Exploration of novel solutions for the direct injection of hydrogen in internal combustion engines (ICEs) is a main topic for both academia and industry. Here, the authors explore the gas-dynamic and mixing features of hydrogen under-expanded jets exiting from non-axisymmetric cross-sections, with the aim to provide guidelines for designing novel generations of ICE hydrogen injectors. Triangular and star shapes have been compared with elliptical and rectangular sections with different aspect ratios. Differences in the shock wave systems are reported, and explanations of the gas-dynamic mechanisms developed by each section are proposed. Non-uniformity in the radial expansion of the jet boundary has been noticed in all of the non-axisymmetric sections, leading to an axis switching of the jet in some cases. Differences in the radial mixing and axial jet penetration have been reported too, and a robust correlation with the vorticity distribution along the jet boundary has been observed.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献