Anisotropy of turbulence at the core of the tip and hub vortices shed by a marine propeller

Author:

Posa AntonioORCID

Abstract

Large-eddy simulation on a grid consisting of 5 billion points was utilized to study the properties of turbulence at the core of the tip and hub vortices shed by a marine propeller across working conditions. Turbulence at the core of the tip vortices was found to be initially isotropic, moving towards a ‘cigar-shaped’ axisymmetric state as instability grows, dominated by turbulent fluctuations of the velocity component directed in the radial direction of the cylindrical reference frame centred at the wake axis. The break-up of the coherence of the tip vortices is instead characterized by turbulence recovering an isotropic state. This process is accelerated by growing load conditions of the propeller. In contrast, during instability of the hub vortex, turbulence at its core develops a ‘pancake-shaped’ axisymmetric state, dominated by the fluctuations of the radial and azimuthal velocities. However, at higher propeller loads turbulence at the core of the hub vortex keeps close to isotropy, thanks to a faster instability. Within both tip and hub vortices the deviations from Boussinesq's hypothesis were found very significant, providing evidence of the unsuitability of conventional turbulence modelling. At the core of the tip vortices they become especially large at their break-up and for increasing load conditions of the propeller, equivalent to more intense structures. In contrast, at the core of the hub vortex they were verified to be decreasing functions of the propeller load.

Funder

European Commission

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3