Fast reaction of soluble surfactant can remobilize a stagnant cap

Author:

Crowdy Darren G.ORCID,Curran Anna E.ORCID,Papageorgiou Demetrios T.ORCID

Abstract

Analytical solutions are derived showing that a stagnant cap of surfactant at the interface between two viscous fluids caused by a linear extensional flow can be remobilized by fast kinetic exchange of surfactant with one of the fluids. Using a complex variable formulation of this multiphysics problem at zero capillary number, zero Reynolds number and zero bulk Péclet number, and assuming a linear equation of state, it is shown that the system is governed by a forced complex Burgers equation at arbitrary surface Péclet number. Consequently, this nonlinear system is shown to be linearizable using a complex analogue of the Cole–Hopf transformation. Steady equilibria of the system at any finite value of the surface Péclet number are found explicitly in terms of parabolic cylinder functions. While surface diffusion is naturally expected to mollify sharp gradients associated with stagnant caps and to remobilize the interface, this work gives an analytical demonstration of the less intuitive result that fast kinetic exchange has a similar effect. Indeed, the analytical approach here imposes no limit on the surface Péclet number, which can be taken to be infinitely large so that surface diffusion is completely absent. Mathematically, the solution structure is then very rich allowing a theoretical investigation of this extreme case where it is seen that fast surfactant exchange with the bulk can alone remobilize a stagnant cap. Remarkably, it is also possible to track explicitly the time evolution of the system to these remobilized equilibria by finding time-evolving exact solutions.

Funder

Engineering and Physical Sciences Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3