On the preferred flapping motion of round twin jets

Author:

Rodríguez DanielORCID,Stavropoulos Michael N.ORCID,Nogueira Petrônio A.S.ORCID,Edgington-Mitchell Daniel M.ORCID,Jordan PeterORCID

Abstract

Linear stability theory (LST) is often used to model the large-scale flow structures in the turbulent mixing region and near pressure field of high-speed jets. For perfectly expanded single round jets, these models predict the dominance of azimuthal wavenumbers $m=0$ and $m = 1$ helical modes for the lower frequency range, in agreement with empirical data. When LST is applied to twin-jet systems, four solution families appear following the odd/even behaviour of the pressure field about the symmetry planes. The interaction between the unsteady pressure fields of the two jets also results in their coupling. The individual modes of the different solution families no longer correspond to helical motions, but to flapping oscillations of the jet plumes. In the limit of large jet separations, when the jet coupling vanishes, the eigenvalues corresponding to the $m=1$ mode in each family are identical, and a linear combination of them recovers the helical motion. Conversely, as the jet separation decreases, the eigenvalues for the $m=1$ modes of each family diverge, thus favouring a particular flapping oscillation over the others and preventing the appearance of helical motions. The dominant mode of oscillation for a given jet Mach number $M_j$ and temperature ratio $T_R$ depends on the Strouhal number $St$ and jet separation $s$ . Increasing both $M_j$ and $T_R$ independently is found to augment the jet coupling and modify the $(St,s)$ map of the preferred oscillation mode. Present results predict the preference of two modes when the jet interaction is relevant, namely varicose and especially sinuous flapping oscillations on the nozzles’ plane.

Funder

Australian Research Council

Australian Government

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference54 articles.

1. An experimental investigation of coupled underexpanded supersonic twin-jets;Bell;Exp. Fluids,2018

2. Dynamics of closely spaced supersonic jets;Goparaju;J. Propul. Power,2018

3. Instability properties of interacting jets;Green;J. Fluid Mech.,1997

4. Instabilities of “top-hat” jets and wakes in compressible fluids;Gill;Phys. Fluids,1965

5. Michalke, A. 1970 A Note on the Spatial Jet-instability of the Compressible Cylindrical Vortex Sheet. DLR-Forschungsbericht. Deutsche Forschungs-und Versuchsanstalt für Luft- und Raumfahrt. 18 S.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3