The linear-time-invariance notion of the Koopman analysis. Part 2. Dynamic Koopman modes, physics interpretations and phenomenological analysis of the prism wake

Author:

Li Cruz Y.ORCID,Chen ZengshunORCID,Tse Tim K.T.ORCID,Weerasuriya Asiri UmengaORCID,Zhang XuelinORCID,Fu YunfeiORCID,Lin XishengORCID

Abstract

This serial work presents a linear-time-invariance (LTI) notion to the Koopman analysis, finding consistent and physically meaningful Koopman modes and addressing a long-standing problem of fluid mechanics: deterministically relating the fluid excitations and corresponding structure reactions. Part 1 (Li et al., Phys. Fluids, vol. 34, no. 12, p. 125136) developed the Koopman-LTI architecture and applied it to a pedagogical prism wake. By a systematic analytical procedure, the Koopman-LTI generated sampling-independent linear models that captured all the recurring dynamics embedded in the input data, finding six corresponding, orthogonal, and in-synch fluid–structure mechanisms. This Part 2 analyses the six modal duplets to underpin their physical implications, providing a phenomenological analysis of the subcritical prism wake. Visualizing the newly proposed dynamic Koopman modes, results show that two mechanisms at St1 = 0.1242 and St5 = 0.0497 describe shear layer dynamics, the associated Bérnard–Kármán shedding and turbulence production, which together overwhelm the upstream and crosswind walls by instigating a reattachment-type of reaction. The on-wind walls’ dynamical similarity renders them a spectrally unified fluid–structure interface. Another four harmonic counterparts, namely the subharmonic at St7 = 0.0683, the second harmonic at St3 = 0.2422, and two ultra-harmonics at St7 = 0.1739 and St13 = 0.1935, govern the downstream wall. Finally, this work discovered the vortex breathing phenomenon, describing the constant energy exchange in the wake's circulation-entrainment-deposition processes. With the Koopman-LTI, one may pinpoint the exact excitations responsible for a specific structure reaction, benefiting future investigations into fluid–structure interactions and nonlinear, stochastic systems.

Funder

Central University Basic Research Fund of China

Natural Science Foundation of Chongqing

Research Grants Council, University Grants Committee

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference89 articles.

1. Hunt, J.C.R. , Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation Databases, Proceedings of the 1988 Summer Program, pp. 193–208. NASA.

2. Koopman analysis by the dynamic mode decomposition in wind engineering

3. Li, C.Y. , Chen, Z. , Tse, T.K.T. , Weerasuriya, A.U. , Zhang, X. , Fu, Y. & Lin, X. 2022 e Best practice for the dynamic mode decomposition in wind engineering applications. In 8th European-African Conference on Wind Engineering (8EACWE) Proceedings (ed. I. Calotescu, A. Chitez, C. Cosoiu & A.C. Vladut), pp. 11–14. Editura Conspress.

4. Effect of edge configuration on wind-induced response of tall buildings

5. Deep learning for universal linear embeddings of nonlinear dynamics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3