Sedimenting-particle redistribution in a horizontal Couette

Author:

Davoodi M.ORCID,Clarke A.ORCID

Abstract

Flow between axially rotating concentric cylinders is well known to exhibit rich dynamics. Hence, Taylor instabilities have been studied, both experimentally and theoretically, for many years. Although usually studied in the abstract, such geometries arise in a range of practical situations including drilling, when a drilling fluid flow enters a well via a pipe that is the centre body and returns via the annulus between the pipe and the borehole wall. In drilling, the centre body rotates and the annular flow contains rock cuttings. Here, we report the development of an Eulerian-Eulerian solver, based on OpenFOAM, that solves for this cuttings transport problem in the presence of both gravity and Taylor vortices. To check the reliability of the solver, we conduct a set of experiments spanning a wide range of complex flow regimes. We show that the model successfully predicts, in all regimes, the observed complex redistribution of particulates. However, for suspension flows under viscously dominated conditions, high particle concentrations and in rectilinear flow, particle pressure and normal stress differences are sufficient to capture particle migration. Results show that in more complex flows exemplified by the Taylor–Couette flow studied here, more realistic predictions of non-Brownian particle migration require inclusion of forces arising through the relative velocity of the two phases including lift forces originating both from inertia and particle rotation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3