Abstract
Turbulent Taylor–Couette flow between two concentric independently rotating cylinders with a radius ratio of
$\eta = 0.1$
is studied experimentally. While the scope is to study the counter-rotating cases between both cylinders, the radial and azimuthal velocity components are recorded at different horizontal planes with high-speed particle image velocimetry. The parametric study considered a set of different shear Reynolds numbers in the range of
$20\,000 \leq Re_s \leq 1.31 \times 10^5$
, with different rotation ratios of
$-0.06 \leq \mu \leq +0.008$
. The observed flow fields had a clear dependence on the rotation ratio, where flow patterns evolved with a more pronounced axial dependence. The angular momentum transport is computed as a result of the recorded flow fields and given by a quasi-Nusselt number. The dependence of the Nusselt number on the different rotation ratios shows a maximum for the low counter-rotating case and
$\mu _{max}$
is found between
$-0.011 < \mu _{max} < -0.0077$
. The Nusselt number decreases for stronger counter-rotation until a minimum is reached, where it tends to increase again for higher counter-rotation rates. The space–time behaviour of the turbulent flow showed the existence of patterns propagating from the inner region towards the outer region for all studied counter-rotating cases. In addition, patterns have been found that tend to propagate from the outer region towards the inner region with a novel character at high counter-rotation cases. These patterns enhance the angular momentum transport where a second maximum in the transport mechanism has to be expected.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献