Acoustic streaming: insights across Reynolds numbers

Author:

Nama NiteshORCID

Abstract

When a fluid system is subjected to an acoustic wave (or another periodic actuation), the response of the fluid is not purely periodic, but is rather characterized by the combination of a periodic flow and a steady Stokes drift component, where the former is, in many cases, an acoustic wave and the latter is commonly referred to as acoustic streaming. Classical theories of acoustic streaming have focused on slow acoustic streaming, where the periodic flow is the leading-order flow, and is insensitive to the steady flow component which appears as a small correction and is characterized by a small hydrodynamic Reynolds number. In contrast, Dubrovski et al. (J. Fluid Mech. vol. 975, 2023, A4) tackle the fast acoustic streaming regime – conceived by Zarembo (Acoustic streaming. In High-Intensity Ultrasonic Fields, 1971, pp. 135–199. Springer) approximately fifty years ago – where both the periodic and steady flow components are of a similar order of magnitude such that the periodic flow both supports and is simultaneously impacted by the steady flow. They present a novel theoretical framework that accounts for the convection of momentum both within and between the periodic and steady flow to extend slow-streaming equations to the case of steady flow with arbitrary hydrodynamic Reynolds number. They leverage a scaling analysis of the resulting system of equations and a case study to demonstrate the compatibility of their equations with slow streaming theories and highlight the distinctive features of fast streaming.

Publisher

Cambridge University Press (CUP)

Reference14 articles.

1. Critical roles of time-scales in soft tissue growth and remodeling;Latorre;APL Bioengng,2018

2. Theory of non-stationary acoustic streaming;Rudenko;Sov. Phys. Acoust.,1971

3. Large-amplitude acoustic streaming;Chini;J. Fluid Mech.,2014

4. Streaming by leaky surface acoustic waves;Vanneste;Proc. R. Soc. Lond. A,2011

5. Frequency effects on the scale and behavior of acoustic streaming;Dentry;Phys. Rev. E,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3