Abstract
We study the mixing processes inside a forced fountain using data from direct numerical simulation. The outer boundary of the fountain with the ambient is a turbulent/non-turbulent interface. Inside the fountain, two internal boundaries, both turbulent/turbulent interfaces, are identified: (i) the classical boundary between upflow and downflow which is composed of the loci of points of zero mean vertical velocity; and (ii) the streamline that separates the mean flow emitted by the source from the entrained fluid from the ambient (the separatrix). We show that entrainment due to turbulent fluxes across the internal boundary is at least as important as that by the mean flow. However, entrainment by the turbulence behaves substantively differently from that by the mean flow and cannot be modelled using the same assumptions. This presents a challenge for existing models of turbulent fountains and other environmental flows that evolve inside turbulent environments.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献