Thermodynamically consistent phase-field modelling of activated solute transport in binary solvent fluids

Author:

Kou JishengORCID,Salama AmgadORCID,Wang XiuhuaORCID

Abstract

Active diffusion of substances in binary immiscible and incompressible fluids with different densities occurs universally in nature and industry, but relevant mathematical models and numerical simulation have been studied scarcely so far. In this paper, a thermodynamically consistent phase-field model is established to describe the activated solute transport in binary fluids with different densities. A mixed free-energy function for multiple solutes is proposed, which leads to different solute chemical potentials in binary solvent fluids, thus it has the ability to characterize the solubility difference of the solutes in two solvents. The two-phase flow is governed by a general hydrodynamic phase-field model that can account for general average velocity and different densities. The proposed model is derived rigorously using the second law of thermodynamics. Moreover, a general multi-component solute diffusion model is established using the Maxwell–Stefan approach, which involves the crossing influences between different solutes. To solve the model effectively, an efficient, linearized and decoupled numerical method is proposed for the model as well. The proposed numerical method can preserve the thermodynamical consistency, i.e. obeying an energy dissipation law at the discrete level, as well as guarantee the mass conservation law for the solutes and solvent fluids. Numerical experiments are carried out to show that the proposed model and numerical method can simulate various processes of the solute active diffusion in two-phase solvent fluids.

Funder

Hubei Provincial Department of Education

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3