Interplay between Brownian and hydrodynamic tracer diffusion in suspensions of swimming microorganisms

Author:

Nordanger Henrik,Morozov AlexanderORCID,Stenhammar JoakimORCID

Abstract

The general problem of tracer diffusion in non-equilibrium baths is important in a wide range of systems, from the cellular level to geographical length scales. In this paper, we revisit the archetypical example of such a system: a collection of small passive particles immersed in a dilute suspension of non-interacting dipolar microswimmers, representing bacteria or algae. In particular, we consider the interplay between thermal (Brownian) diffusion and hydrodynamic (active) diffusion due to the persistent advection of tracers by microswimmer flow fields. Previously, it has been argued that even a moderate amount of Brownian diffusion is sufficient to significantly reduce the persistence time of tracer advection, leading to a significantly reduced value of the effective active diffusion coefficient $D_A$ compared to the non-Brownian case. Here, we show by large-scale simulations and kinetic theory that this effect is in fact practically relevant only for microswimmers that effectively remain stationary while still stirring up the surrounding fluid – so-called shakers. In contrast, for moderate and high values of the swimming speed, relevant for biological microswimmer suspensions, the effect of Brownian motion on $D_A$ is negligible, leading to the effects of advection by microswimmers and Brownian motion being additive. This conclusion contrasts with previous results from the literature, and encourages a reinterpretation of recent experimental measurements of $D_A$ for tracer particles of varying size in bacterial suspensions.

Funder

Vetenskapsrådet

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3