Displacement speed, flame surface density and burning rate in highly turbulent premixed flames characterized by low Lewis numbers

Author:

Lee H.C.,Dai P.,Wan M.ORCID,Lipatnikov A.N.ORCID

Abstract

Direct numerical simulation data obtained from four pairs of turbulent, lean hydrogen–air, complex-chemistry flames are analysed to explore the influence of molecular diffusion on flame surface density, displacement speed $S_d$ and the flame surface density transport equation terms. Each pair involves (i) a flame where mixture-averaged molecular diffusivities are adopted and Lewis number $Le$ is significantly less than unity and (ii) an equidiffusive flame where all molecular diffusivities are set equal to molecular heat diffusivity of the mixture and $Le=1$ , with other things being equal. Reported results show that significantly higher turbulent burning rates simulated in the former flames result mainly from an increase in the local fuel consumption rate, whereas an increase in flame surface area plays a secondary role, especially in more intense turbulence. The rate increase stems from (i) an increase in the peak local fuel consumption rate and (ii) an increase in a width of a zone where the rate is significant. The latter phenomenon is of more importance in richer flames and both phenomena are most pronounced in the vicinity of the flame leading edges, thus indicating a crucial role played by the leading edge of a premixed turbulent flame in its propagation. Moreover, mean displacement speed differs significantly from the laminar flame speed even in the equidiffusive flames, varies substantially across flame brush and may be negative at the leading edges of highly turbulent flames.

Funder

Guangdong Science and Technology Department

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3