Instabilities in the wake of an isolated cylindrical roughness element

Author:

Weingärtner AndréORCID,Mamidala Santhosh B.ORCID,Fransson Jens H.M.ORCID

Abstract

The instability mechanism behind a geometrically simple cylindrical roughness element continues to be a challenging topic in fluid mechanics. Considerable progress has been made in understanding the phenomena in recent years, but more research is needed to predict the temporal nature and spatial structure of the dominant instability in a given flow configuration. This is of particular interest, as these instabilities dictate the transition to turbulence and thus are significant for large-scale effects such as skin friction drag. A smoke-flow visualization study with a large variation of parameters, featuring a cylindrical roughness element connected to a linear traverse, has been performed. Results show good agreement with previous investigations and provide further insights into the stability properties, revealing several unexpected effects. For a low roughness aspect ratio $\eta$ , no global instability is detected even at the highest roughness Reynolds number $Re_{kk}$ , whereas a high aspect ratio indicates a delay in the onset of instability. From the acquired visualizations, we constructed the, so far, richest instability diagram of the wake behind an isolated roughness element in the $Re_{kk}\unicode{x2013}\eta$ space, sampled in the same measurement campaign. Furthermore, information regarding the dominant frequency in the wake can be extracted from the visualization images. Our results suggest a new scaling of the frequency as the velocity is increased. Finally, it is shown that the dominant frequency in a certain flow regime can be well predicted using a Strouhal number based on the cylinder diameter and the roughness velocity.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference32 articles.

1. Gregory, N. & Walker, W.S. 1951 The effect of transition of isolated surface excrescenses in the boundary layer. Aero. Res. Coun. Rep. & Mem. 2779 (2779 (Part I)), 1–10.

2. Geometry effect of isolated roughness on boundary layer transition investigated by tomographic PIV

3. Unsteady and Transitional Flows Behind Roughness Elements

4. Influence of freestream turbulence on the flow over a wall roughness;Bucci;Phys. Rev. Fluids,2021

5. Secondary instability of roughness-induced transient growth

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3