Modelling and shock control for a V-shaped blunt leading edge

Author:

Kang DakeORCID,Yan ChaoORCID,Liu SijiaORCID,Wang Zhaowei,Jiang ZhenhuaORCID

Abstract

Hypersonic flow on a V-shaped blunt leading edge (VSBLE) at Mach 12 is numerically investigated. A series of self-induced shock–shock interactions and shock wave/boundary layer interactions (SWBLIs) cause extremely high heat flux peaks on the crotch of the VSBLE. Based on these shock structures, a simplified model that divides the flow field into inviscid and viscous areas is constructed. This model can quickly solve the shock interactions and predict the heating/pressure peaks with high accuracy. Furthermore, a shock control bump (SCB) is placed on the SWBLI region to split the strong incident shock into a weaker multi-wave system. The mechanism study of the SCB shows that the inviscid effect significantly reduces the heating/pressure peaks, and the viscous effect suppresses the SWBLI-induced separation. Finally, a VSBLE with SCBs is numerically investigated. The heat flux peak is reduced by 66 % compared to that without the SCBs. The robustness of the SCB under various working conditions is also evaluated. This paper provides an idea for the simplified solution of complex shock interactions and extends the application of the SCB as a thermal protection device in hypersonic flow for the first time.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3