On the time scales of spectral evolution of nonlinear waves

Author:

Simonis AshleighORCID,Hrabski AlexanderORCID,Pan YulinORCID

Abstract

As presented in Annenkov & Shrira (Phys. Rev. Lett., vol. 102, 2009, 024502), when a surface gravity wave field is subjected to an abrupt perturbation of external forcing, its spectrum evolves on a ‘fast’ dynamic time scale of $O(\varepsilon ^{-2})$ , with $\varepsilon$ a measure of wave steepness. This observation poses a challenge to wave turbulence theory that predicts an evolution with a kinetic time scale of $O(\varepsilon ^{-4})$ . We revisit this unresolved problem by studying the same situation in the context of a one-dimensional Majda–McLaughlin–Tabak equation with gravity wave dispersion relation. Our results show that the kinetic and dynamic time scales can both be realised, with the former and latter occurring for weaker and stronger forcing perturbations, respectively. The transition between the two regimes corresponds to a critical forcing perturbation, with which the spectral evolution time scale drops to the same order as the linear wave period (of some representative mode). Such fast spectral evolution is mainly induced by a far-from-stationary state after a sufficiently strong forcing perturbation is applied. We further develop a set-based interaction analysis to show that the inertial-range modal evolution in the studied cases is dominated by their (mostly non-local) interactions with the low-wavenumber ‘condensate’ induced by the forcing perturbation. The results obtained in this work should be considered to provide significant insight into the original gravity wave problem.

Funder

Simons Foundation

Publisher

Cambridge University Press (CUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3