On coupled envelope evolution equations in the Hamiltonian theory of nonlinear surface gravity waves

Author:

Li YanORCID

Abstract

This paper presents a novel theoretical framework in the Hamiltonian theory of nonlinear surface gravity waves. The envelope of surface elevation and the velocity potential on the free water surface are introduced in the framework, which are shown to be a new pair of canonical variables. Using the two envelopes as the main unknowns, coupled envelope evolution equations (CEEEs) are derived based on a perturbation expansion. Similar to the high-order spectral method, the CEEEs can be derived up to arbitrary order in wave steepness. In contrast, they have a temporal scale as slow as the rate of change of a wave spectrum and allow for the wave fields prescribed on a computational (spatial) domain with a much larger size and with spacing longer than the characteristic wavelength at no expense of accuracy and numerical efficiency. The energy balance equation is derived based on the CEEEs. The nonlinear terms in the CEEEs are in a form of the separation of wave harmonics, due to which an individual term is shown to have clear physical meanings in terms of whether or not it is able to force free waves that obey the dispersion relation. Both the nonlinear terms that can only lead to the forcing of bound waves and those that are capable of forcing free waves are demonstrated, in the case of the latter through the analysis of the quartet and quintet resonant interactions of linear waves. The relations between the CEEEs and two other existing theoretical frameworks are established, including the theory for a train of Stokes waves up to second order in wave steepness (Fenton, ASCE J. Waterway Port Coastal Ocean Engng, vol. 111, issue 2, 1985, pp. 216–234) and a semi-analytical framework for three-dimensional weakly nonlinear surface waves with arbitrary bandwidth and large directional spreading by Li & Li (Phys. Fluids, vol. 33, issue 7, 2021, 076609).

Funder

Norges Forskningsråd

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3