The influence of free stream turbulence on the development of a wind turbine wake

Author:

Gambuzza StefanoORCID,Ganapathisubramani BharathramORCID

Abstract

The wake of an isolated model-scale wind turbine is analysed in a set of inflow conditions having free stream turbulence intensity between 3 % and 12 %, and integral time scales in the range of 0.1–10 times the convective time scale based on the turbine diameter. It is observed that the wake generated by the turbine evolves more rapidly, with the onset of the wake evolution being closer to the turbine, for high turbulence intensity and low integral time scale flows, in accordance with literature, while flows at higher integral time scales result in a slow wake evolution, akin to that generated by low-turbulence inflow conditions despite the highly turbulent ambient condition. The delayed onset of the wake evolution is connected to the stability of the shear layer enveloping the near-wake, which is favoured for low-turbulence or high-integral time scale flows, and to the stability of the helical vortex set surrounding the wake, as this favours interaction events and prevents momentum exchange at the wake boundary which hinder wake evolution. The rate at which the velocity in the wake recovers to undisturbed conditions is instead analytically shown to be a function of the Reynolds shear stress at the wake centreline, an observation that is confirmed by measurements. The rate of production of Reynolds shear stress in the wake is then connected to the power harvested by the turbine to explain the differences between flows at equivalent turbulence intensity and different integral time scales. The wake recovery rate, and by extension the behaviour of the turbine wake in high-integral time scale flows, is seen to be a linear function of the free stream turbulence intensity for flows with Kolmogorov-like turbulence spectrum, in accordance with literature. This relation is seen not to hold for flows with different free stream turbulence spectral distribution; however, this trend is recovered if the contributions of low frequency velocity components to the turbulence intensity are ignored or filtered out from the computation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3