Abstract
The scattering of three-dimensional inertia-gravity waves by a turbulent geostrophic flow leads to the redistribution of their action through what is approximately a diffusion process in wavevector space. The corresponding diffusivity tensor was obtained by Kafiabad et al. (J. Fluid Mech., vol. 869, 2019, R7) under the assumption of a time-independent geostrophic flow. We relax this assumption to examine how the weak diffusion of wave action across constant-frequency cones that results from the slow time dependence of the geostrophic flow affects the distribution of wave energy. We find that the stationary wave-energy spectrum that arises from a single-frequency wave forcing is localised within a thin boundary layer around the constant-frequency cone, with a thickness controlled by the acceleration spectrum of the geostrophic flow. We obtain an explicit analytic formula for the wave-energy spectrum which shows good agreement with the results of a high-resolution simulation of the Boussinesq equations.
Funder
Natural Environment Research Council
Engineering and Physical Sciences Research Council
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献