Experimental characterisation and data-driven modelling of unsteady wall pressure fields induced by a supersonic jet over a tangential flat plate

Author:

Meloni StefanoORCID,Centracchio Francesco,de Paola Elisa,Camussi RobertoORCID,Iemma UmbertoORCID

Abstract

This work deals with the investigation and modelling of wall pressure fluctuations induced by a supersonic jet over a tangential flat plate. The analysis is performed at several nozzle pressure ratios around the nozzle design Mach number, including slightly over-expanded and under-expanded conditions, and for different radial positions of the rigid plate. Pitot measurements and flow visualizations through the background oriented schlieren technique provided a general overview of the aerodynamic interactions between the jet flow and the plate at the different regimes and configurations. Wall pressure fluctuations were measured using a couple of piezoelectric pressure transducers flush mounted over the plate surface. The spectral analysis has been carried out to clarify the effect of the plate position on the single and multivariate wall pressure statistics, including the screech tone amplitude. The experimental dataset is used to assess and validate a surrogate model based on artificial neural networks. Sound pressure levels and coherence functions are modelled by means of a single fully connected network, built on the basis of a recently implemented fully deterministic topology optimization algorithm. The metamodel uncertainty is also quantified using the spatial correlation function. It is shown that the flow behaviour as well as the screech and broadband noise signatures are significantly influenced by the presence of the plate, and the effects on spectral quantities are correctly reproduced by the proposed data-driven model that provides predictions in agreement with the available data.

Funder

H2020 Transport

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3