Abstract
The detailed energy sources that sustain the eigenmodal exponential growth in boundary layers are currently unclear. In the present study, the phase of each term in the linear stability equation is examined to identify the significant physical sources for a wide range of Mach numbers and wall temperature ratios. The Tollmien–Schlichting mode for incompressible flows, the oblique first mode for supersonic flows and the Mack second mode and supersonic mode for hypersonic flows share some similar features. The unique appearance of obliqueness for the most unstable first mode is accompanied by the enhancement of Reynolds shear stress. By contrast, the weakened Reynolds thermal stress prevents the oblique second mode from being the most unstable state. Wall cooling stabilises the oblique first mode by rendering Reynolds thermal stress and dilatation fluctuations out of phase with the internal energy fluctuation. It destabilises the second mode by a newly generated pronounced region of wall-normal internal energy transport beneath the second generalised inflection point. In comparison, the porous coating destabilises the oblique first mode by significantly enhancing the mean-shear production while it stabilises the second mode similarly to wall heating. Finally, the relatively weak supersonic mode has the feature that the phase destruction of wall-normal transport near the critical layer results in a low contribution to the internal energy growth. Connections and consistencies are also highlighted with the previous inviscid thermoacoustic interpretation for the second mode (Kuehl, AIAA J., vol. 56, 2018, pp. 3585–3592) and for the supersonic mode. The pronounced sources along the critical layer and near-wall regions provide a unified understanding of the local energy amplification mechanisms of the inviscid modes in hypersonic boundary layers.
Funder
Research Grants Council, University Grants Committee
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献