Principle of fundamental resonance in hypersonic boundary layers: an asymptotic viewpoint

Author:

Song RunjieORCID,Dong MingORCID,Zhao Lei

Abstract

The fundamental resonance (FR) in the nonlinear phase of the boundary-layer transition to turbulence appears when a dominant planar instability mode reaches a finite amplitude and the low-amplitude oblique travelling modes with the same frequency as the dominant mode, together with the stationary streak modes, undergo the strongest amplification among all the Fourier components. This regime may be the most efficient means to trigger the natural transition in hypersonic boundary layers. In this paper, we aim to reveal the intrinsic mechanism of the FR in the weakly nonlinear framework based on the large-Reynolds-number asymptotic technique. It is found that the FR is, in principle, a triad resonance among a dominant planar fundamental mode, a streak mode and an oblique mode. In the major part of the boundary layer, the nonlinear interaction of the fundamental mode and the streak mode seeds the growth of the oblique mode, whereas the interaction of the oblique mode and the fundamental mode drives the roll components (transverse and lateral velocity) of the streak mode, which leads to a stronger amplification of the streamwise component of the streak mode due to the lift-up mechanism. This asymptotic analysis clearly shows that the dimensionless growth rates of the streak and oblique modes are the same order of magnitude as the dimensionless amplitude of the fundamental mode $(\bar {\epsilon }_{10})$ , and the amplitude of the streak mode is $O(\bar {\epsilon }_{10}^{-1})$ greater than that of the oblique mode. The main-layer solution of the streamwise velocity, spanwise velocity and temperature of both the streak and the oblique modes become singular as the wall is approached, and so a viscous wall layer appears underneath. The wall layer produces an outflux velocity to the main-layer solution, inclusion of which leads to an improved asymptotic theory whose accuracy is confirmed by comparing with the calculations of the nonlinear parabolised stability equations (NPSEs) at moderate Reynolds numbers and the secondary instability analysis (SIA) at sufficiently high Reynolds numbers.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3