Abstract
Recent studies reveal the dramatic impact of seafloor roughness on the dynamics and stability of broad oceanic flows. These findings motivate the development of parameterizations that concisely represent the effects of small-scale bathymetric patterns in theoretical and coarse-resolution numerical circulation models. The previously reported quasi-geostrophic ‘sandpaper’ theory of flow–topography interaction a priori assumes gentle topographic slopes and weak flows with low Rossby numbers. Since such conditions are often violated in the ocean, we now proceed to formulate a more general model based on shallow-water equations. The new version of the sandpaper model is validated by comparing roughness-resolving and parametric simulations of the flow over a corrugated seamount.
Funder
National Science Foundation
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献