The hidden structure of hydrodynamic transport in random fracture networks

Author:

Dentz MarcoORCID,Hyman Jeffrey D.

Abstract

We study the large-scale dynamics and prediction of hydrodynamic transport in random fracture networks. The flow and transport behaviour is characterized by first passage times and displacement statistics, which show heavy tails and anomalous dispersion with a strong dependence on the injection condition. The origin of these behaviours is investigated in terms of Lagrangian velocities sampled equidistantly along particle trajectories, unlike classical sampling strategies at a constant rate. The velocity series are analysed by their copula density, the joint distribution of the velocity unit scores, which reveals a simple, albeit hidden, correlation structure that can be described by a Gaussian copula. Based on this insight, we derive a Langevin equation for the evolution of equidistant particle speeds. In this framework, particle motion is quantified by a stochastic time-domain random walk, the joint density of particle position, and speed satisfies a Klein–Kramers equation. The upscaled theory quantifies particle motion in terms of the characteristic fracture length scale and the distribution of Eulerian flow velocities. That is, it is predictive in the sense that it does not require the a priori knowledge of transport attributes. The upscaled model captures non-Fickian transport features, and their dependence on the injection conditions in terms of the velocity point statistics and average fracture length. It shows that the first passage times and displacement moments are dominated by extremes occurring at the first step. The presented approach integrates the interaction of flow and structure into a predictive model for large-scale transport in random fracture networks.

Funder

European Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3