Abstract
A thin liquid droplet spreads on a soft viscoelastic substrate with arbitrary rheology. Lubrication theory is applied to the governing field equations in the liquid and solid domains, which are coupled through the free boundary at the solid–liquid interface, to derive a set of reduced equations that describe the spreading dynamics. Fourier transform techniques and the finite difference method are used to construct a solution for the dynamic liquid–gas and solid–liquid interface shapes, as well as the macroscopic contact angle. Substrate properties affect the spreading dynamics through the contact angle and internal droplet flow fields, and these mechanisms are revealed. Increased substrate softness increases the spreading rate, whereas increased viscoelasticity decreases the spreading rate. For the case of a purely elastic substrate, the spreading power-law exponent recovers Tanner's law in the rigid limit and increases with substrate softness.
Funder
Division of Chemical, Bioengineering, Environmental, and Transport Systems
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献