Physics-constrained deep reinforcement learning for flow field denoising

Author:

Yousif Mustafa Z.ORCID,Zhang MengORCID,Yu LinqiORCID,Yang YifanORCID,Zhou HaifengORCID,Lim HeeChangORCID

Abstract

A multi-agent deep reinforcement learning (DRL)-based model is presented in this study to reconstruct flow fields from noisy data. A combination of reinforcement learning with pixel-wise rewards, physical constraints represented by the momentum equation and the pressure Poisson equation, and the known boundary conditions is used to build a physics-constrained deep reinforcement learning (PCDRL) model that can be trained without the target training data. In the PCDRL model, each agent corresponds to a point in the flow field and learns an optimal strategy for choosing pre-defined actions. The proposed model is efficient considering the visualisation of the action map and the interpretation of the model operation. The performance of the model is tested by using direct numerical simulation-based synthetic noisy data and experimental data obtained by particle image velocimetry. Qualitative and quantitative results show that the model can reconstruct the flow fields and reproduce the statistics and the spectral content with commendable accuracy. Furthermore, the dominant coherent structures of the flow fields can be recovered by the flow fields obtained from the model when they are analysed using proper orthogonal decomposition and dynamic mode decomposition. This study demonstrates that the combination of DRL-based models and the known physics of the flow fields can potentially help solve complex flow reconstruction problems, which can result in a remarkable reduction in the experimental and computational costs.

Funder

National Research Foundation

Korea Institute of Energy Technology Evaluation and Planning

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3