Abstract
The stability and sensitivity of two- and three-dimensional global modes developing on steady spanwise-homogeneous laminar separated flows around NACA 4412 swept wings are numerically investigated for different Reynolds numbers
${\textit {Re}}$
and angles of attack
$\alpha$
. The wake dynamics is driven by the two-dimensional von Kármán mode whose emergence threshold in the
$\alpha \unicode{x2013}{\textit {Re}}$
plane is computed with that of the three-dimensional centrifugal mode. At the critical Reynolds number, the Strouhal number, the streamwise wavenumber of the von Kármán mode and the spanwise wavenumber of the leading three-dimensional centrifugal mode scale as a power law of
$\alpha$
. The introduction of a sweep angle attenuates the growth of all unstable modes and entails a Doppler effect in the leading modes’ dynamics and a shift towards non-zero frequencies of the three-dimensional centrifugal modes. These are found to be non-dispersive as opposed to the von Kármán modes. The sensitivity of the leading global modes is investigated in the vicinity of the critical conditions through adjoint-based methods. The growth-rate sensitivity map displays a region on the suction side of the wing, wherein a streamwise-oriented force has a net stabilising effect, comparable to what could have been obtained inside the recirculation bubble. In agreement with the predictions of the sensitivity analysis, a spanwise-homogeneous force suppresses the Hopf bifurcation and stabilises the entire branch of von Kármán modes. In the limit of small amplitudes, passive control via spanwise-wavy forcing produces a stabilising effect similar to that of a spanwise-homogeneous control and is more effective than localised spherical forces.
Funder
Cleansky
Agence Nationale de la Recherche
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献