Selection of vortex ripple dimensions in sinusoidal oscillatory flows. Part 1. Ripple dimensions and fluid kinematics

Author:

Yue LiangyiORCID,Hsu Tian-JianORCID,Horner-Devine Alexander R.ORCID

Abstract

Subaqueous vortex ripples in equilibrium are characterized by their unique geometry and dimensions. Motivated by the recent direct numerical simulation study of oscillatory turbulent flow over a wavy bottom by Önder & Yuan (J. Fluid Mech., vol. 858, 2019, pp. 264–314), the objective of this study is to further investigate the fluid dynamical controls that determine the distinctive equilibrium dimensions of vortex ripples. We use direct numerical simulations to investigate the differences in flow kinetics between sinusoidal oscillatory flow over equilibrium and out-of-equilibrium vortex ripples. In comparison with the equilibrium case, the spanwise coherent vortices, the averaged bottom shear stress on overlying flow and the shear stress distribution on the ripple surface are identified as the key fluid dynamical controls on equilibrium dimensions. Based on these controls, we propose mechanisms in the selection of vortex ripple dimensions. We observe that the flow adjusts in such a way that the interaction between overlying flow and vortex ripples tends to generate the strongest coherent vortices while the ripple surface (or overlying flow) experiences the smallest shear stress averaged over ripple wavelength during the selection process. Through a triple decomposition of the flow, the component of the ripple-induced fluctuation is found to dictate these fluid dynamical controls, which implies that this component plays an important role in the evolution of vortex ripples.

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3