Shape dynamics of capsules in two phase-shifted orthogonal ultrasonic standing waves: a numerical investigation

Author:

Liu Yifan,Xin FengxianORCID

Abstract

This work investigates the time-averaged shape dynamics of a soft elastic capsule in two phase-shifted orthogonal ultrasonic standing waves. The capsule consists of an elastic membrane that encloses a viscous fluid and is immersed in another viscous fluid. Combining the acoustic perturbation theory of fluid dynamics with the thin-shell mechanics of capsule membrane deformation, two sets of equations are established to govern the ultrasonic propagation and the time-averaged response of the fluid–capsule system, respectively. These governing equations are solved numerically based on the finite element method. Numerical simulations show that the ultrasonic standing waves have pure elongation and pure rotation effects on the initially circular capsule when the phase difference is 0 and ${\rm \pi}/2$ , respectively. By setting the phase difference between 0 and ${\rm \pi}/2$ , it is found that the initially circular capsule exhibits a tank-treading motion due to the combined effect of the elongation and rotation. The capsule membrane elasticity and internal fluid viscosity have significant effects on the tank-treading behaviour of the initially circular capsule, including elongation deformation, inclination angle and tank-treading velocity. For the initially non-circular capsule, three types of dynamical states, including stable orientation, swinging and tumbling, are predicted by varying the phase difference and intensity of the ultrasonic standing waves, as well as the initial shape, membrane elasticity and internal fluid viscosity of the initially non-circular capsule. This work enriches the cell manipulation capabilities of ultrasonic standing wave micro-acoustofluidics and may inspire new biological applications.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3