Fluid–structure resonance in spanwise-flexible flapping wings

Author:

Martínez-Muriel C.ORCID,Arranz G.ORCID,García-Villalba M.ORCID,Flores O.ORCID

Abstract

We report direct numerical simulations of the flow around a spanwise-flexible wing in forward flight. The simulations were performed at$Re=1000$for wings of aspect ratio 2 and 4 undergoing a heaving and pitching motion at Strouhal number$St_c\approx 0.5$. We have varied the effective stiffness of the wing$\varPi _1$while keeping the effective inertia constant,$\varPi _0=0.1$. It has been found that there is an optimal aerodynamic performance of the wing linked to a damped resonance phenomenon, that occurs when the imposed frequency of oscillation approaches the first natural frequency of the structure in the fluid,$\omega _{n,f}/\omega \approx 1$. In that situation, the time-averaged thrust is maximum, increasing by factor 2 with respect to the rigid case with an increase in propulsive efficiency of approximately 15 %. This enhanced aerodynamic performance results from the combination of larger effective angles of attack of the outboard wing sections and a delayed development of the leading edge vortex. With increasing flexibility beyond the resonant frequency, the aerodynamic performance drops significantly, in terms of both thrust production and propulsive efficiency. The cause of this drop lies in the increasing phase lag between the deflection of the wing and the heaving/pitching motion, which results in weaker leading edge vortices, negative effective angles of attack in the outboard sections of the wing, and drag generation in the first half of the stroke. Our results also show that flexible wings with the same$\omega _{n,f}/\omega$but different aspect ratio have the same aerodynamic performance, emphasizing the importance of the structural properties of the wing for its aerodynamic performance.

Funder

Agencia Estatal de Investigación

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3