Air entrapment at impact of a conus onto a liquid

Author:

Carrat J.-B.ORCID,Gavrilov N.ORCID,Cherdantsev A.ORCID,Shmakova N.ORCID,Ermanyuk E.ORCID

Abstract

In this experimental work, a conus impacts a deep liquid pool at a speed varying from 1.3 to $19.0\ {\rm cm}\ {\rm s}^{-1}$ . Two liquids (2.5 % butanol–water solution or distilled water) and four coni made from duralumin with a diameter of 180 mm and different deadrise angles $\beta$ ( $2^{\circ }$ , $3^{\circ }$ , $4^{\circ }$ and 5 $^{\circ }$ ) are tested. An air cushion is trapped between the conus solid surface and the liquid. Several types of bubble patterns after the collapse of the air cushion are observed: one or multiple bubbles near the conus centre (vertex), irregular trails of bubbles on the conus surface and a ring of bubbles in a ‘necklace’-shaped arrangement. With a total internal reflection set-up and appropriate image post-processing, the external and internal radii of the ring-shaped wetted area are estimated for each frame. The external (internal) radius increases (decreases) in time following a linear (exponential) law. The speed of the outer border of the wetted area is in agreement with the Wagner theory for a body impacting onto a liquid. The initial radius of the annular touchdown region is estimated as the intersection of the relevant fitting curves. In the studied range of parameters, the initial radius obeys a universal scaling law, which follows from the air–water lubrication–inertia balance.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3