Modulation of coaxial cone-jet instability in active co-flow focusing

Author:

Mu KaiORCID,Qiao RanORCID,Ding HangORCID,Si TingORCID

Abstract

The breakup of coaxial cone-jet interfaces to compound droplets in axisymmetric co-flow focusing (CFF) upon actuation is studied through numerical simulations. Due to the coupling effect of double interfaces, the response behaviours of coaxial cone-jet flow to actuation are more complex than those of a single-layered interface structure. Particularly, the coaxial jet presents totally different response modes between weak and strong interface coupling situations. In this work, the phase diagrams of response modes for coaxial jet breakup are depicted, considering the effect of perturbation frequency, amplitude and liquid flow rates. In particular, the breakup of a coaxial jet can be synchronized with actuation within a frequency range containing the natural breakup frequency, resulting in uniform compound droplets with a single core inside the shell, and the size of droplets can be adjusted by frequency. As the perturbation frequency exceeds the upper critical value, the external perturbation is unable to dominate the jet breakup, while below the lower critical frequency, the jet breaks up with multiple droplets generated in one period. The perturbation amplitude mainly affects the jet breakup length and also leads to the transition between different response modes. The coaxial cone upstream of the orifice can act as a buffer layer, regulating the perturbation amplitude of the coaxial jet downstream. The degree of buffering effect is affected by the perturbation frequency and amplitude. As the perturbation amplitude approaches unity, the decrease of perturbation frequency leads to the intermittent jet behaviour from the cone tip with a vibrating manner of the coaxial cone. Based on the linear instability analysis on the simplified single jet models for weak-coupled and strong-coupled jets, scaling analyses are carried out, which predict the jet breakup length and the natural frequency and critical frequency for the synchronized breakup. Finally, a strong pulse is added on the perturbation to produce compound droplets with a controllable number of cores. The present work provides valuable guidance for the practical application of on-demand compound droplet generation through active CFF.

Funder

Fundamental Research Funds for the Central Universities

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3