New formulations for the mean wall-normal velocity and Reynolds shear stress in a turbulent boundary layer under zero pressure gradient

Author:

Wei TieORCID,Li ZhaoruiORCID,Wang YanxingORCID

Abstract

In this study, a novel analytical solution is derived rigorously for the mean wall-normal velocity in a turbulent boundary layer (TBL) under zero pressure gradient (ZPG), without relying on any a priori assumptions regarding the mean streamwise velocity. By neglecting the higher-order terms in the exact solution, an approximate formulation for the mean wall-normal velocity is obtained. The accuracy of this approximation is then validated through a comparison with data from direct numerical simulations (DNS). Drawing upon the distinct behaviours of force balance in the inner and outer regions of the ZPG TBL, simplified approximate mean momentum equations are derived by decomposing the Reynolds shear stress into inner and outer parts. The inner and outer Reynolds shear stresses are then obtained through integration of the corresponding approximate mean momentum equations. The outer Reynolds shear stress is revealed to exhibit a strong connection to the mean wall-normal velocity. Specifically, it is observed that $R_{uv-{out}}/u^2_\tau \approx 1 - UV/(U_e V_e)$ , where $u_\tau$ represents the friction velocity, and $U_e$ and $V_e$ denote the mean streamwise and wall-normal velocities at the boundary layer edge, respectively. Finally, an approximate formulation for the Reynolds shear stress across the entire TBL is developed by synthesizing the inner and outer parts. Extensive validation against both DNS and experimental data, spanning a wide range of Reynolds numbers, demonstrates the excellent agreement achieved.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3