Experimental study on Richtmyer–Meshkov instability at a light–heavy interface over a wide range of Atwood numbers

Author:

Chen Chenren,Xing Yinuo,Wang HeORCID,Zhai ZhigangORCID,Luo XishengORCID

Abstract

Richtmyer–Meshkov instability (RMI) at a light–heavy single-mode interface over a wide range of post-shock Atwood numbers $A_1$ is studied systematically through elaborate experiments. The interface generation and $A_1$ variation are achieved by the soap-film technology and gas-layer scheme, respectively. Qualitatively, the nonlinear interface evolution features, including spike, bubble and roll-up structures, are more significant in RMI with higher $A_1$ . Quantitatively, both the impulsive model and an analytical linear model perform well in predicting the linear growth rate under a wide range of $A_1$ conditions. For the weakly nonlinear stage, the significant spike acceleration occurring when $A_1$ is high, which is observed experimentally for the first time, results in the evolution law of RMI with high $A_1$ being different from the counterpart with low or intermediate $A_1$ . None of the considered nonlinear models is found to be applicable for RMI under all $A_1$ conditions, and the predictive capabilities of these models are analysed and summarized. Based on the present experimental results, an empirical nonlinear model is proposed for RMI over a wide range of $A_1$ . Further, modal analysis shows that in RMI with high (low or intermediate) $A_1$ , high-order harmonics evolve rapidly (slowly) and cannot (can) be ignored. Accordingly, for RMI with high (low or intermediate) $A_1$ , the modal model proposed by Zhang & Sohn (Phys. Fluids, vol. 9, 1997, pp. 1106–1124) is less (more) accurate than the one proposed by Vandenboomgaerde et al. (Phys. Fluids, vol. 14, 2002, pp. 1111–1122), since the former ignores perturbation solutions higher than fourth order (the latter retains only terms with the highest power in time).

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3