A constitutive relation generalizing the Navier–Stokes theory to high-rate regimes

Author:

Pahlani GunjanORCID,Schwartzentruber Thomas,James Richard D.ORCID

Abstract

We propose a constitutive equation for flows of gases in high-rate regimes where the Navier–Stokes theory breaks down. The model generalizes the Navier–Stokes relation and agrees well with that model in all lower rate flows examined. Our proposed constitutive relation is calibrated with the method of objective molecular dynamics (OMD) using families of compressible and incompressible flows of Lennard-Jones argon. The constitutive relation makes use of the higher-order objective strain rates due to Rivlin and Ericksen (J. Rat. Mech. Anal., vol. 4, 1955, pp. 323–425). The constitutive relation is fully frame-indifferent, and the macroscopic flows corresponding to the OMD simulations are exact solutions for the proposed model. The model is shown to agree with atomistic results much better than the Navier–Stokes equations in the transition regime. The success of our model indicates that it is not higher gradients that become important in the high-rate regime, but rather higher rates of change of the strain rate tensor. While somewhat more complicated to implement than the Navier–Stokes relation, the proposed model is expected to be compatible with existing methods of computational fluid dynamics and may extend those methods to higher rate regimes, while preserving their ability to handle large spatial scales.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3