Upscaled dynamic capillary pressure for two-phase flow in porous media

Author:

Lasseux DidierORCID,Valdés-Parada Francisco J.ORCID

Abstract

A closed expression for the average pressure difference (often called the macroscopic dynamic capillary pressure in the literature) is proposed for two-phase, Newtonian, incompressible, isothermal and creeping flow in homogeneous porous media. This upscaled equation complements the average equations for mass and momentum transport derived in a previous article. Consistently with this work, the expression is derived employing a simplified version of the volume-averaging method that makes use of elements of the adjoint method and Green's formula. The resulting equation for the average pressure difference is novel, as it shows that this quantity is controlled by the pressure gradient (and body forces) in each phase, as well as interfacial effects, and is applicable to situations in which the fluid–fluid interface is not necessarily at its steady position. The effective-medium quantities associated with the sources are all obtained from the solution of a single adjoint (or closure) problem to be solved on a (periodic) unit cell representative of the process. The average pressure difference predicted by the derived expression is validated through excellent comparisons with direct numerical simulations performed in a model porous structure.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3