Self-induced flow over a cylinder in a stratified fluid

Author:

Thomas JimORCID,Camassa Roberto

Abstract

In this paper we study the self-induced low-Reynolds-number flow generated by a cylinder immersed in a stratified fluid. In the low Péclet limit, where the Péclet number is the ratio of the radius of the cylinder and the Phillips length scale, the flow is captured by a set of linear equations obtained by linearising the governing equations with respect to the prescribed far field conditions. We specifically focus on the low Péclet regime and develop a Green's function approach to solve the linearised equations governing the flow over the cylinder. We cross check our analytical solution against numerical solution of the nonlinear equations to obtain the range of the Péclet numbers for which the linear solution is valid. We then take advantage of the analytical solution to find explicit far-field decay rates of the flow. Our detailed analysis points out that the streamfunction and the velocity field decays algebraically in the far field. Intriguingly, this algebraic decay of the flow is much slower when compared with the exponential decay of the flow generated by a slow moving cylinder in the homogeneous Stokes regime, in the absence of stratification. Consequently, the flow generated by a cylinder in the stratified Stokes regime will have a larger domain of influence when compared with the flow generated by a cylinder in the homogeneous Stokes regime.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference25 articles.

1. A first-principle mechanism for particulate aggregation and self-assembly in stratified fluids

2. Advanced Transport Phenomena

3. On flows induced by diffusion in a stably stratified fluid;Phillips;Deep Sea Res.,1970

4. Performance of Autonomous Lagrangian Floats

5. Über die stokessche formel und über die verwandte aufgabe in der hydrodynamik;Oseen;Ark. Mat. Astron. Fys.,1910

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3