The buoyancy staircase limit in surface quasigeostrophic turbulence

Author:

Yassin HoussamORCID

Abstract

Surface buoyancy gradients over a quasigeostrophic fluid permit the existence of surface-trapped Rossby waves. The interplay of these Rossby waves with surface quasigeostrophic turbulence results in latitudinally inhomogeneous mixing that, under certain conditions, culminates in a surface buoyancy staircase: a meridional buoyancy profile consisting of mixed zones punctuated by sharp buoyancy gradients, with eastward jets centred at the sharp gradients and weaker westward flows in between. In this article, we investigate the emergence of this buoyancy staircase limit in surface quasigeostrophic turbulence and we examine the dependence of the resulting dynamics on the vertical stratification. Over decreasing stratification ( $\mathrm {d}N(z)/\mathrm {d}z\leq 0$ , where $N(z)$ is the buoyancy frequency), we obtain flows with a longer interaction range (than in uniform stratification) and highly dispersive Rossby waves. In the staircase limit, we find straight jets that are perturbed by eastward propagating along jet waves, similar to two-dimensional barotropic $\beta$ -plane turbulence. In contrast, over increasing stratification ( $\mathrm {d}N(z)/\mathrm {d}z\geq 0$ ), we obtain flows with shorter interaction range and weakly dispersive Rossby waves. In the staircase limit, we find sinuous jets with large latitudinal meanders whose shape evolves in time due to the westward propagation of weakly dispersive along jet waves. These along jet waves have larger amplitudes over increasing stratification than over decreasing stratification, and, as a result, the ratio of domain-averaged zonal to meridional speeds is two to three times smaller over increasing stratification than over decreasing stratification. Finally, we find that, for a given Rhines wavenumber, jets over increasing stratification are closer together than jets over decreasing stratification.

Funder

National Oceanic and Atmospheric Administration

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3