Insights into the flame transitions and flame stabilization mechanisms in a freely falling burning droplet encountering a co-flow

Author:

Vadlamudi GauthamORCID,Aravind AkhilORCID,Basu SaptarshiORCID

Abstract

The present study investigates the flame dynamics of a contactless burning fuel droplet under free fall subjected to a co-flow. The dynamic external relative flow established due to co-flow and droplet acceleration results in a series of droplet flame transitions. Different flame structures were observed, including a wake flame, reversed wake flame and enveloped flame. Following ignition, the droplet is allowed to fall through the central tube of a co-flow arrangement, and, at its exit, the droplet flame encounters the co-flow. The wake flame, which was established based on the droplet's instantaneous velocity of descent, encounters the abrupt relative velocity jump due to the co-flow. This causes the droplet flame to go through various transitions as it approaches equilibrium with the surrounding flow. Once it equilibrates, the droplet flame evolves in response to the instantaneous relative flow velocity. The droplet flame evolves by altering both its shape and the stabilization mechanism. Two stabilization mechanisms were identified for the droplet wake flame: edge-flame stabilization and bluff-body stabilization. The stabilization mechanism for different flame structures and the transition events have been theoretically analysed, and the relation between flame shape evolution and flow velocity has been determined based on the flow-field characteristics at the corresponding Re (Reynolds number) range. Furthermore, these correlations are employed in a mathematical formulation based on the spring–mass analogy, which predicts the droplet flame evolution after encountering the co-flow, including all the transition events.

Funder

Science and Engineering Research Board

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3